Mastering the Vim Language

Chris Toomey
@thoughtbot
@christoomey

https://ctoomey.com

| love Vim because I've yet to hit the
celling

Typing is not the bottleneck
-- Michael Hill (GeePawHill)}

! http:/anarchycreek.com/2009/05/26/how-tdd-and-pairing-increase-production/

Vim's killer feature is the language it
provides for making changes

Syntax of the Language

Verb + Noun

d for delete
w for word,

combine to be "delete word"

Commands are Repeatable &
Undoable

Verbs in Vim

The operation you want to take on the text

e d=> Delete

e c => Change (delete and enter insert mode)
e >=>|Indent

e v => Visually select

e v => Yank (copy)

Nouns in Vim -- Motions

e w=>word (forward by a "word")
e b => back (back by a "word")

e 23 =>down 2 lines

Nouns in Vim -- Text Objects

iw => "inner word" (works from anywhere in a word)
it => "inner tag" (the contents of an HTML tag)

i" => "Inner quotes”

ip => "inner paragraph"

as => "a sentence”

Nouns in Vim -- Parameterized Text Objects

e £ F =>"fAnd" the next character
e €, T =>"find" the next character

o / => Search (up to the next match)

+ + +

Ul O U1 DN

Combinatorics of Commands

operators
operators
operators
operators

x %k X X

10 motions

10 text objects

35 characters * 4 (for
~100 (for '/)

e

b

g

T

Combinatorics of Commands

5 commands * 1@ motions
+ 5 commands * 10 text objects
+ 5 commands ¥ /0 characters * 4 (for £, F , 't , T)
+ 5 commands * ~100 (for '/)

2000

Distinct commands based on memorizing ~30 key mappings (that
are very memorable)

Learning Vim as a Language

Ben McCormick

benmccormick.org Follow

I'm Ben McCormick, a web developer from Durham, North

Carolina. | write about the tools, techniques, and challenges of
writing code for the modern web.

Learning Vim in 2014: Vim as Language

- July 02, 2014 -

Wouldn't it be nice if your text editor just did what you said instead of making you slowly and
manually add and delete characters? Vim doesn't speak English, but it has a language of its own, built
out of composable commands, that is much more efficient than the simple movement and editing
commands you'll find in other editors. In my last post, | took an initial look at Vim as a language. I'm
going to dive deeper into that here.

Vim Verbs: What can you do?

Vim'’s "verbs” mostly fall into 2 main categories. Some of them act on a single character, and others
act on a "motion” or "text object”. We'll look at motions in a second, but lets start by looking at the
verbs.

Single character verbs

So like | said, there are a few vim actions that act on a single character. They act as shortcuts for
actions that you can also perform with motions, and allow you to save a few keystrokes.

Command Action

X Delete character under the cursor

r Replace character under cursor with another character
s Delete character under cursor and move to insert mode

These are great commands to know, and things that | use daily, but they act as a bit of an island. Let's
look at some verbs with more power.

™o o | A a*_

http://benmccormick.org/2014/07/02/learning-vim-in-2014-vim-as-language/

Vim Text Objects: The Definitive Guide

’ Posted on 17th October 2011 by Jared Carroll in Process

Vim Text Objects: The Definitive Guide

To edit efficiently in Vim, you have to edit beyond individual characters. Instead, edit by word,
sentence, and paragraph. In Vim, these higher-level contexts are called text objects. C ar b on F ive b I 0O g

Vim provides text objects for both plaintext and common programming language constructs.
You can also define new text objects using Vim script.

Learning these text objects can take your Vim editing to a whole new level of precision and
speed.

Structure of an Editing Command

In Vim, editing commands have the following structure:

<number=><command><text object or motion>

The number is used to perform the command over multiple text objects or motions, e.g.,
backward three words, forward two paragraphs. The number is optional and can appear either
before or after the command.

The command is an operation, e.g., change, delete (cut), or yank (copy). The command is also
optional; but without it, you only have a motion command, not an edit command

The text object or motion can either be a text construct, e.qg., a word, a sentence, a paragraph,
or a motion, e.g., forward a line, back one page, end of the line.

An editing command is a command plus a text object or motion, e.g., delete this word, change
the next sentence, copy this paragraph.

Plaintext Text Objects

Vim provides text objects for the three building blocks of plaintext: words, sentences and
paragraphs.

Words

http://blog.carbonfive.com/2011/10/17/vim-text-objects-the-definitive-guide/

Why Atom Can't Replace Vim
Mike Kozlowski

Emacs and Extensibility

Emacs’ big idea was that it could be modified and extended cleanly. The
functionality of the editor is defined in a library of commands, which are
then bound to particular keystrokes. So there might be a save-buffer
command bound to C-x C-s, a kill-region command bound to C-w, and so

on.

If you don’t like those key mappings you can change them—go ahead and
make kill-region be C-k if you want. And you can do more than just change
mappings: If you want additional functionality, you can just write your own
functions in the same language as the built-in functions (Lisp, in the case of
GNU Emacs). The editor’s Ul is almost infinitely malleable, and can be

mutated to any purpose you desire.

If this sounds a bit commonplace, it’s because Emacs’ big idea has been
widely influential and extensibility is today a standard feature in any serious
editor. Sublime Text uses Python instead of Lisp, and Atom uses
Coffeescript, but the fundamentals of commands and keymaps are built in
to the core. Even Vim has absorbed Emacs’ extensibility: Vim script can

define new functions, which can be mapped to command keystrokes.

Vi and Composability

Vi’s big idea hasn’t been nearly as influential.

Vi is fundamentally built on command composability. It favors small,
general-purpose commands that can be combined with objects to compose
larger commands. By contrast, Emacs and its philosophical descendants
(including Sublime Text and Atom) use monolithic, special-purpose

commands.

Let’s say that you want to move the cursor forward a word, to the end of the

line, to the end of the file, or to the end of the paragraph.

Emacs has commands for these motions: forward-word, move-end-of-line,

https://medium.com/@mkozlows/why-atom-cant-replace-vim-433852f4b4d1

usevim

Home Contact Subscribe

Stop the Vim Configruation Madness
Stop the Vim Configuration Madness

20 February 2013 by Alex Young B essays, rants Contains th|S great, SUCCinCt qUOte:

You know what improves productivity?

VIM - Vi IMproved . .
Mastering motions and operators.

version 7.3.780
by Bram Moolenaar et al.
is open source and freely distributable

Become a registered Vim user!

shelp register<Enter> for information

1q<Enter> to exit
help<Enter> or <Fi> for on-line help
thelp version7<Enter> for version info

0,0-1

Convention over configuration is an established paradigm, it even has a
Wikipedia page! | like the idea of things working well out of the box.
However, when it comes to Vim many people are attracted to it because
they've heard how configurable it is. | think most of us are drawn to
hackable things -- there's probably a strong correlation between Vim users,
Arduino hackers and Android tinkerers. But the obsession with
configuration has got to go.

Too many new Vim users obsess over plugins and configuration. Let me
give you an extremely important Vim tip: practice using it. |'ve seen one
too many love-letter-to-Vim blog posts where the author recommends a

http://usevim.com/2013/02/20/configuration/

Your problem with Vim is that you don't
grok vi.

The classic Stackoverflow post that sets
the standard on talking about the Vim
language.

50 Answers

K :
2868

%

active oldest votes

next

Your problem with Vim is that you don't grok vi.

You mention cutting with yy and complain that you almost never want to cut whole lines. In fact
programmers, editing source code, very often want to work on whole lines, ranges of lines and
blocks of code. However, yy is only one of many way to yank text into the anonymous copy
buffer (or "register" as it's called in vi).

The “Zen" of vi is that you're speaking a language. The initial y is a verb. The statement yy isa
synonym for y_ . The y is doubled up to make it easier to type, since it is such a common
operation.

This can also be expressed as dd P (delete the current line and paste a copy back into place;
leaving a copy in the anonymous register as a side effect). The y and d "verbs" take any
movement as their "subject." Thus yW is "yank from here (the cursor) to the end of the
current/next (big) word" and y'a is "yank from here to the line containing the mark named 'a'."

If you only understand basic up, down, left, and right cursor movements then vi will be no more
productive than a copy of "notepad" for you. (Okay, you'll still have syntax highlighting and the
ability to handle files larger than a piddling ~45KB or so; but work with me here).

vi has 26 "marks" and 26 "registers." A mark is set to any cursor location using the m command.
Each mark is designated by a single lower case letter. Thus ma sets the 'a' mark to the current
location, and mz sets the 'z' mark. You can move to the line containing a mark using the '
(single quote) command. Thus 'a moves to the beginning of the line containing the 'a' mark. You
can move to the precise location of any mark using the * (backquote) command. Thus *z will
move directly to the exact location of the 'z' mark.

Because these are "movements"” they can also be used as subjects for other "statements."

So, one way to cut an arbitrary selection of text would be to drop a mark (| usually use 'a’' as my
"first" mark, 'z' as my next mark, 'b' as another, and 'e' as yet another (| don't recall ever having
interactively used more than four marks in 15 years of using vi; one creates one's own
conventions regarding how marks and registers are used by macros that don't disturb one's
interactive context). Then we go to the other end of our desired text; we can start at either end, it
doesn't matter. Then we can simply use d*a tocutor y'a to copy. Thus the whole process has
a 5 keystrokes overhead (six if we started in “insert" mode and needed to Esc out command

mode). Once we've cut or copied then pasting in a copy is a single keystroke: p .

| say that this is one way to cut or copy text. However, it is only one of many. Frequently we can
more succinctly describe the range of text without moving our cursor around and dropping a
mark. For example if I'm in a paragraph of text | can use { and } movements to the beginning
or end of the paragraph respectively. So, to move a paragraph of text | cut it using { d} (3
keystrokes). (If | happen to already be on the first or last line of the paragraph | can then simply
use d} or d{ respectively.

The nation of "naracranh" defarilte to eamethina which ie nienialiv intnitivelv reacoanabhle Thiie it

http://stackoverflow.com/a/1220118
http://stackoverflow.com/a/1220118

Tips for Mastering the Language

The "dot" command

e Use the more general text object (iw rather than w even if at
beginning of word)

* Prefer text objects to motions when possible

e Repeat.vim for plugin repeating

https://github.com/tpope/vim-repeat

Relative Number

Visual Mode Is a Smell

Don't use two sentences where one will due

Breaks repeatability

Custom Operators

Surround
Commentary
ReplaceWithRegister
Titlecase
Sort-motion
System-copy

https://github.com/tpope/vim-surround
https://github.com/tpope/vim-commentary
https://github.com/vim-scripts/ReplaceWithRegister
https://github.com/christoomey/vim-titlecase
https://github.com/christoomey/vim-sort-motion
https://github.com/christoomey/vim-system-copy

Custom Text Objects

Indent
Entire

Line

Ruby block

https://github.com/kana/vim-textobj-indent
https://github.com/kana/vim-textobj-entire
https://github.com/kana/vim-textobj-line
https://github.com/nelstrom/vim-textobj-rubyblock

Custom Text Objects -- Finding
More

Many many more available

textobj-user wiki

General purpose text objects

Plugin name

vim-textobj-
between

vim-textobj-
brace

vim-textobj-
comment

vim-textobj-
continuous-
line

vim-textobj-
datetime

vim-textobj-
diff

vim-textobj-
entire

vim-textobj-
erb

vim-textobj-
fold

Author

thinca

Julian

glts

rhysde

kana

kana

kana

whatyouhide

kana

Summary

af{char} / if{char} for a region between
{char} s

aj / ij for the closest region between any of
() [1 or {}.

ac / ic for a comment

av / iv for lines continued by \ in C++, sh,
and others

ada / ida and others for date and time such as

2013-03-13, 19:51:45, 2013-03-
13T19:51:50 , and more

adh / idh and others for various elements in
diff(1) output

ae / ie for the entire region of the current buffer

aE / iE for erb tags

az / iz for a block of folded lines

https://github.com/kana/vim-textobj-user/wiki

In Conclusion

Having a composable language of operations
and text objects is one honking great idea --
let's do more of those!

